

Virtualized reality model-based benchmarking of AR/MR camera tracking methods in TrakMark

OKoji Makita(1) Takashi Okuma(1) Tomoya Ishikawa(1) Laurence NIGAY(2) Takeshi Kurata(1)

(1) : Center for Service Research, AIST, Japan(2) : Universite J. Fourier, France

k.makita@aist.go.jp

ISMAR2012WS(TMA) (Nov. 05. 2012@GEORGIA TECH HOTEL)

Virtualized reality models in service research

Image Based Tracking for AR

Tracking with artificial markers "ARToolKit"(Kato, et al)

Tracking with interest points "PTAM" (G. Klein, et al)

Camera parameter estimation is needed for AR

Benchmarking of camera tracking methods

Issues in the benchmarking

- 1: Ground truth of camera parameters is needed for accuracy evaluation.
- 2: Set up of other method is needed for comparative evaluation.

Related works: Benchmark data set for camera tracking

Image_00

Image_01

The Yosemite sequence (by Lynn Quam)

A Benchmark for the Evaluation of RGB-D SLAM Systems (J. Sturm et al, IROS2012)

Center tor Service Research	Activity in TrakMark:	Data s	et distribution
	Benchmark Test Schemes for AR/MR Geometric Reg	Stration and Trackin	ng Methods
Homo Benchr	e Activities Benchmark Results Membe nark	rs Links	
Image Se * If down E-Mail: i	quence Set No.2 were uploaded on April 28, 2011. load speed is too slow, please contact the following address. We can send info@trakmark.net	a blu-ray disk that ·	contains all o
• Image	<u>e Sequence Set No.1</u> Film Studio Package 01 NAIST Campus Package 01 Conference Venue Package 01 <u>Sequence Set No.2</u>		Trackhark Innuse Seguence Set ##2 # Blumy Dis # Take one for free !!
	Provision of our data set on website		Distribution of data discs in conferences / social

http://trakmark.net/

events

1

Examples of data set in TrakMark

Film Studio Package

NAIST Campus Package

Conference Venue Package

Data set created by AIST (Images in data set are generated by virtualized reality models)

Standardization of benchmarking camera tracking method

Objective

Supports for users to understand abilities and features of multiple tracking methods with benchmark data set.

We plan to standardize benchmarking methods in "ISO / JTC1 / SC24 / WG9 (Augmented reality continuum concepts and reference model)"

- Approach
- 1 : Construction of standards in two categories
 - Dataset-format
 - Indexes for benchmarking camera tracking method
- 2 : Construction of benchmarking environment
 - Development of a benchmark suite

Data set generation with virtualized reality models

By applying virtualized reality models •••

- ✓ Ground truth data are available.
- ✓Users can generate arbitrary camera path.

An example of virtualized reality model (Venue of ISMAR2009)

Area : 1217 [m²] Time for shooting pictures : 45 [min] Time for modeling : 6.5 [h]

Outline of generating data set

(Camera parameters of the images are available.)

(3D-2D correspondences are known.)

Appearance of generating data set with the tool

Videos captured by Head Mounted Camera and Hand Held Camera

Head Mounted Camera

Hand Held Camera

Modelization of walking motion

Walking motion model is introduced to the tool for simulating a motion of head-mounted camera.

Results of applying walking motion models

Settings of parameters

- Basic height 1600 [mm]
- Vertical variance 50 [mm]
- Horizontal variance 80 [mm]
- Yaw variance
 1 [degree]
- Walking step length 650 [mm]
- Walking speed 900 [mm]

Without walking motion

With walking motion

Images with defocus blur

Experiment (user's own benchmarking)

Virtualized reality model used in the experiment. (Shopping mall in Osaka, Japan)

1. Data set generation

2. Creation of key frames

rvice searci

We manually selected four images as key frames used by the tracking method.

3. Generation of interest points

iervice lesearch

4.Camera tracking with generated images

5.1 Evaluation of camera positions

5. 2 Evaluation of rotation error (Euler angle)

ervice esearch

Euler angle(raw values)

5.2 Rotation errors calculated by using difference Matrix

 $R_d = R_g R_e^T$

 $\theta_{R_d} = \arccos((\operatorname{tr}(R_d) - 1)/2)$

Rotation errors calculated by using difference Matrix

5.3 Projection error of virtual objects

Calculation procedure

National Institute of Advanced Industrial Science and Technology

5.3 Projection errors of virtual objects (with various distances)

a = 7000 [mm]

of frames

National Institute of Advanced Industrial Science and Technology

a = 5000 [mm]

of frames

Projection errors (a = 1000 [mm])

Projection errors (a = 3000 [mm])

of the frames National Institute of Advanced Industrial Science and Technology

Effects of the walking motion

34

Conclusion

Virtualized reality model-based benchmarking of camera tracking methods in TrakMark.

- Standardization in two categories
 - Dataset-format
 - Indexes for benchmarking camera tracking method
- Development of the benchmark suite for supporting
 - Dataset creation
 - Benchmarking process

~Future works~

- Provision of benchmarking results
- Additional expansions for the tool
 (Additional camera motion models, Introduction of motion capture data, Change of lighting, ... etc)