Classifying handheld Augmented Reality: Three categories linked by spatial mappings

Thomas Vincent, Laurence Nigay
(University of Grenoble, France)
Takeshi Kurata (AIST, Japan)

Workshop on Classifying the AR Presentation Space at ISMAR ’12
4th of November 2012
Plan

• Introduction and scope
• Framework
• Dynamicity
• Future work
• Conclusion
Introduction: Academic Definition

- Academic definition [Azuma 97]:
 - Combines real and virtual
 - Interactive in real time
 - Registered in 3D
Introduction: Academic Definition

• Academic definition [Azuma 97]:
 – Combines real and virtual
 – Interactive in real time
 – Registered in 3D

• Specific to AR:
 – ‘Real’ AND ‘Virtual’
 – Spatiotemporal relationship between the physical world and digital content.
Introduction

• Augmentation is mostly visual
• AR is influenced by hardware
• So handheld AR has some specificities:
 – Viewpoint is controlled by device pose
 – Direct Touch is the de facto standard input (1:1 mapping with the screen)
• How to relax spatial constraint while keeping physical/digital colocation?
Introduction

• Scope: Visual augmentation in handheld Augmented Reality
• Focus on spatial relations
• Goal: Organize design alternatives in a framework
Framework Presentation

Framework organized around:

• 3 entities, 2 categories for on-screen content
• 2 spatial mappings
Representation of the Physical World

• On-screen content representing the physical surrounding

• Allows the user to map the viewpoint and digital augmentation in the physical world
Representation of the Physical World

• Mode of representation:
 – Live video, snapshots
 – Non-photorealistic
 – Virtual Model
Digital Augmentation

• On-screen content that is not the representation of the physical world
• Provide extra information and interaction
Digital Augmentation

• Visual aspect:
 – Reproduction Fidelity axis [Milgram 1994]
 – Dimensionality [Tönnis 2011]
Digital Augmentation

• Content:
 – Selection of content beyond de facto viewport visibility
 – Information filtering [Julier 00]
Distinction

Representation / Augmentation
Distinction

Representation / Augmentation

• ClayVision [Takeushi 2012]

• Distinction on a per-characteristic rather than a per-object basis
Spatial mapping between the physical world and its representation

• Coupling of the viewpoint with the handheld device pose.

• Projection:
 – Camera dependent, zoom
 – Distortion (e.g. Fish-eye)
 – Orthographic
Spatial mapping between the Augmentation and the Representation

• Spatial coupling of the augmentation with the representation of the physical world

• Relaxing this coupling is useful to improve augmentation legibility
Framework: Summary

- A snapshot at a given time
- Need for description of dynamicity and transitions
Dynamicity of the spatial mappings

• Initiative:
 – Explicit
 – Implicit
 – Automatic

• Sustainability:
 – Transient
 – Sustained
Dynamicity of the spatial mappings

• Spatial mapping between the physical world and its representation:
 – Freeze-frame implemented as explicit and sustained
Sample technique: AR TapTap

- Adapt TapTap [Roudaut 08] to AR
 - Explicit and transient freeze rather than sustained
 - 2 views: one with freeze, the other with live video
Dynamicity of the spatial mappings

• Spatial mapping between the physical world and its representation:
 – Touch Projector: implicit and transient zooming
Dynamicity of the spatial mappings

• Spatial mapping between the representation and the augmentation:
 – Implicit

View Management [Bell 01]
Dynamicity of the spatial mappings

- Transient transitions interesting to best fit current user’s task
- Implicit transitions interesting as no extra user’s action is necessary
- To avoid discontinuity, transitions needs an assistance such as animation
Ongoing Work

• Validation and refinement:
 – Existing classifications
 – Existing interaction techniques and systems
 – Own experience
Ongoing Work

- Input modalities and spaces
 - Relaxed viewpoint control
 - Interaction with augmented scene
Future Work

• Generalization to other AR settings

<table>
<thead>
<tr>
<th>Display device</th>
<th>Physical World</th>
<th>Representation Physical World</th>
<th>Augmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Video</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>- Video Miniat.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>- Optical</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Projection-based</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Handheld device</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Conclusion

• Framework:
 – 3 entities, 2 categories for on-screen content
 – 2 spatial mappings
 – Dynamicity of spatial mappings: Initiative, sustainability
Thank you for your attention

Questions ?