Classifying handheld Augmented Reality: Three categories linked by spatial mappings

Thomas Vincent, Laurence Nigay (University of Grenoble, France) Takeshi Kurata (AIST, Japan)

Workshop on Classifying the AR Presentation Space at ISMAR '12 4th of November 2012

Plan

- Introduction and scope
- Framework
- Dynamicity
- Future work
- Conclusion

Introduction: Academic Definition

- Academic definition [Azuma 97]:
 - Combines real and virtual
 - Interactive in real time
 - Registered in 3D

(c) Ubiquitous Computers

[Rekimoto 95]

(d) Augmented Interaction

- → Human Computer Interaction
- Human Real World Interaction
- Real World Computer Interaction

Introduction: Academic Definition

- Academic definition [Azuma 97]:
 - Combines real and virtual
 - Interactive in real time
 - Registered in 3D
- Specific to AR:
 - 'Real' AND 'Virtual'

[Rekimoto 95]

 Spatiotemporal relationship between the physical world and digital content.

Introduction

- Augmentation is mostly visual
- AR is influenced by hardware
- So handheld AR has some specificities:
 - Viewpoint is controlled by device pose
 - Direct Touch is the de facto standard input (1:1 mapping with the screen)
- How to relax spatial constraint while keeping physical/digital colocation?

Introduction

- Scope: Visual augmentation in handheld Augmented Reality
- Focus on spatial relations
- Goal: Organize design alternatives in a framework

Framework Presentation

Framework organized around:

- 3 entities, 2 categories for on-screen content
- 2 spatial mappings

Representation of the Physical World

- On-screen content representing the physical surrounding
- Allows the user to map the viewpoint and digital augmentation in the physical world

Representation of the Physical World

- Mode of representation:
 - Live video, snapshots
 - Non-photorealistic
 - Virtual Model

Digital Augmentation

- On-screen content that is not the representation of the physical world
- Provide extra information and interaction

Digital Augmentation

- Visual aspect:
 - Reproduction Fidelity axis [Milgram 1994]
 - Dimensionality [Tönnis 2011]

Digital Augmentation

- Content:
 - Selection of content beyond de facto viewport visibility

77°F

On-screen content

Information filtering [Julier 00]

Distinction Representation / Augmentation

Distinction Representation / Augmentation

ClayVision [Takeushi 2012]

 Distinction on a per-characteristic rather than a per-object basis

Spatial mapping between the physical world and its representation

 Coupling of the viewpoint with the handheld device pose.

- Projection:
 - Camera dependent, zoom
 - Distortion (e.g. Fish-eye)
 - Orthographic

Spatial mapping between the Augmentation and the Representation

 Spatial coupling of the augmentation with the representation of the physical world

 Relaxing this coupling is useful to improve augmentation legibility

Framework: Summary

- A snapshot at a given time
- Need for description of dynamicity and transitions

- Initiative:
 - Explicit
 - Implicit
 - Automatic
- Sustainability:
 - Transient
 - Sustained

- Spatial mapping between the physical world and its representation:
 - Freeze-frame implemented as explicit and sustained

Sample technique: AR TapTap

- Adapt TapTap [Roudaut 08] to AR
 - Explicit and transient freeze rather than sustained
 - 2 views: one with freeze, the other with live video

- Spatial mapping between the physical world and its representation:
 - Touch Projector: implicit and transient zooming

- Spatial mapping between the representation and the augmentation:
 - Implicit

- Transient transitions interesting to best fit current user's task
- Implicit transitions interesting as no extra user's action is necessary
- To avoid discontinuity, transitions needs an assistance such as animation

Ongoing Work

- Validation and refinement:
 - Existing classifications
 - Existing interaction techniques and systems
 - Own experience

Ongoing Work

- Input modalities and spaces
 - Relaxed viewpoint control
 - Interaction with augmented scene

Future Work

Generalization to other AR settings

Display device	Physical	_	Augmentation
	World	Physical World	
HMD			
- Video		✓	✓
- Video Miniat.	✓	✓	✓
- Optical	✓		✓
Projection-based	✓		✓
Handheld device	✓	✓	✓

Conclusion

- Framework:
 - 3 entities, 2 categories for on-screen content
 - 2 spatial mappings
 - Dynamicity of spatial mappings: Initiative, sustainability

Thank you for your attention

Questions?