

Estimation of Photo-Shoot Location with a Mobile-Phone Camera Based on Virtualized-Reality Environment Models

Jun NISHIDA¹², Tomoya ISHIKAWA¹, Koji MAKITA¹, Masakatsu KOUROGI¹, Jun YAMASHITA², Hideaki KUZUOKA², Takeshi KURATA¹²

¹Center for Service Research, AIST, Japan ²University of Tsukuba, Japan

EBS, Post POS, MR Information Sharing

- Real-virtual correspondences of products with POS (Point-Of-Sales) systems
 - Facilitate modeling and designing the flow of the products by not strongly relying on tacit knowledge.
 - Brought about drastic changes in retail, chain restaurant, logistics, etc.
 - Realized EBS (Evidence-Based Service) to some extend.
- On the analogy...
- One of the next key issues for service innovation
 - → How to Make better correspondence between customers/employees/service processes/environment and the computerized ones.
 - → Mixed-Reality Information Sharing technologies!

MR Information Sharing Technologies in Human-Behavior Sensing and Visualization Research Team

Horizontal-Vertical Development of MR Information Sharing Technologies

(Integration, Added functionality, Higher performance) Vertical Development

PDR (Pedestrian Dead-Reckoning)

Estimates velocity vector, relative altitude, and actions by measurements from waist-mounted sensor module.

- Wearing sensor module on waist
 - ✓ Easy to wear and maintain
 - ✓ Easy to measure data for action recognition
 - ✓ Relatively easily to apply for handheld setting compared to shoe-mounted PDR based on Zero Velocity Updates (ZUPTs)

Sensor module

- Accelerometers
- Gyro-sensors
- Magnetometers
- Barometer

Handheld PDR

From PDR to PDRplus

Pedestrian Tracking System

Our goal

Estimation of photo-shoot location with mobile-phone camera for Initialization and Offset

Initialization

iPhone4
Users

Previous works~ Panorama-Based Annotation

✓ A lot of panoramic images are needed for wide environments

Panorama-Based to Model Based

Matching

Matching

Input image

Panoramic images

Input image

Virtualized-Reality Environment Models

Design for coarse to fine localization

Set up for experiments

- Similarities for coarse estimation
 - Histogram similarity in the HSV space (using H and S)
 - Sum of Squared Difference (SSD)
 - Zero-mean Normalized Cross-Correlation (ZNCC)
- Feature for fine estimation
 - Scale-Invariant Feature Transform (SIFT)

- Images for experiments
 - Real images (photos taken with an iPhone)
 - Generated images from a virtualized-reality model

Real images and generated images for experiments

Image generation from a virtualized-reality model

Position and orientation used for image generation

Generated image from a virtualized-reality model

Generated image from a virtualized-reality model (generated by changing camera position)

Similarity map

i-Phone

Real image taken with an

virtualized-reality model

Experimental result:

Histogram similarity in the HSV space (using H and S)

Experimental result:

Similarity of Sum of Squared Difference (SSD)

Experimental result: Similarity of Zero-mean Normalized Cross-Correlation (ZNCC)

Generated image from a virtualized-reality model (generated by changing camera position)

Center for Service Research

Experimental result: Histogram similarity in the HSV space (using H and S)

Difference of shooting orientations between real image and generated image (degree)

Experimental result: Similarity of Sum of Squared Difference (SSD)

Difference of shooting orientations between real image and generated image (degree)

Experimental result: Similarity of Zero-mean Normalized Cross-Correlation (ZNCC)

Difference of shooting orientations between real image and generated image (degree)

Sample result of SIFT matching

Generated image (Almost same position)

Generated image (Different position)

Real image

Conclusion of coarse estimation

- HSV: NOT Appropriate
 - Similarity of the nearest point is NOT high.
- SSD: NOT Appropriate
 - Similarity of the nearest point is NOT high.
- ZNCC : Appropriate
 - Similarity of the nearest point is local maximal.

Future works

- More Experiments
 - in wide environments
 - with changing position and orientation in same time
- Observational study for fine estimation
 - More study with SIFT
 - Study with edge based method

Appendix 1: Definitions of similarities

• SSD =
$$\sum_{j=0}^{N-1} \sum_{i=0}^{M-1} (I_1(i,j) - I_2(i,j))^2$$

•
$$R_{SSD} = 1 - \frac{SSD}{Pix*255*255}$$

•
$$R_{ZNCC} = \frac{\sum_{j=0}^{N-1} \sum_{i=0}^{M-1} ((I_1(i,j) - \overline{I_1})(I_2(i,j) - \overline{I_2}))}{\sqrt{\sum_{j=0}^{N-1} \sum_{i=0}^{M-1} (I_1(i,j) - \overline{I_1})^2 * \sum_{j=0}^{N-1} \sum_{i=0}^{M-1} (I_2(i,j) - \overline{I_2})^2}}$$

$$\begin{array}{l} \bullet \quad R_{Hist} = \\ & \frac{\sum_{j=0}^{32-1} \sum_{i=0}^{30-1} (H_1(i,j) - \overline{H_1}) \sum_{j=0}^{32-1} \sum_{i=0}^{30-1} (H_2(i,j) - \overline{H_2})}{\sqrt{\sum_{j=0}^{32-1} \sum_{i=0}^{30-1} (H_1(i,j) - \overline{H_1})^2 \sum_{j=0}^{32-1} \sum_{i=0}^{30-1} (H_2(i,j) - \overline{H_2})^2}} \end{array}$$

Appendix 2:

Similarity maps of ZNCC before and after the earthquake

Before

Appendix 2:

Similarity maps of ZNCC before and after the earthquake

Before

Appendix 2:

Similarity maps of ZNCC before and after the earthquake

C

Before

